Flexural Strength and Ductility Improvement of NSC beams
نویسندگان
چکیده
In order to calculate the flexural strength of normal-strength concrete (NSC) beams, the nonlinear actual concrete stress distribution within the compression zone is normally replaced by an equivalent rectangular stress block, with two coefficients of α and β to regulate the intensity and depth of the equivalent stress respectively. For NSC beams design, α and β are usually assumed constant as 0.85 and 0.80 in reinforced concrete (RC) codes. From an earlier investigation of the authors, α is not a constant but significantly affected by flexural strain gradient, and increases with the increasing of strain gradient till a maximum value. It indicates that larger concrete stress can be developed in flexure than that stipulated by design codes. As an extension and application of the authors’ previous study, the modified equivalent concrete stress block is used here to produce a series of design charts showing the maximum design limits of flexural strength and ductility of singlyand doublyNSC beams, through which both strength and ductility design limits are improved by taking into account strain gradient effect. Keywords—Concrete beam, Ductility, Equivalent concrete stress, Normal strength, Strain gradient, Strength
منابع مشابه
Flexural Testing of High Strength Reinforced Concrete Beams Strengthened with CFRP Sheets
The objective of this study is to investigate the effectiveness of externally bonded CFRP sheets to increase the flexural strength of reinforced high strength concrete (HSC) beams. Four-point bending flexural tests to complete failure on six concrete beams, strengthened with different layouts of CFRP sheets were conducted. Three-dimensional nonlinear finite element (FE) models were adopted by A...
متن کاملFlexural Strengthening of Deficient Reinforced Concrete Beams with Post-Tensioned Carbon Composites using Finite Element Modelling
The application of external post-tensioned steel bars as an effective way to strengthen an existing bridge has been so far used in many different countries. In recent decades, however, they have been replaced by bars made from Carbon Fiber Reinforced Polymer (CFRP), as a material with high tensile strength and corrosion resistance, to address several concerns with steel bars such as their appli...
متن کاملNumerical investigation of GFRP bars contribution on performance of concrete structural elements
In this study, twenty glass fiber reinforced polymer (GFRP) reinforced concrete specimens were modelled using finite element method to predict the effect of GFRP compressive bars on the flexural strength and ductility of GFRP reinforced concrete beams. Also, the contribution of GFRP longitudinal rebars to the load-carrying capacity of reinforced concrete columns is determined. The concrete elas...
متن کاملFlexural Performance of High-strength Prestressed Concrete-encased Concrete-filled Steel Tube Sections
The sections composed of concrete and steel, which include concrete-encased concrete-filled tubes, generally have defects due to the low tensile strength of concrete. Therefore, an appropriate method was used for the combination of concrete-filled tubes (CFT) and prestressing strands which is encased in concrete. The conventional design guidelines are commonly developed for materials with norma...
متن کاملFlexural Behavior of Lightweight Concrete Beams Reinforced with GFRP Bars and Effects of the Added Micro and Macro Fiber
This study evaluated the effect of macro steel fiber (SF), micro glass fiber (GF) and micro polypropylene fiber (PF) in lightweight aggregate concrete, (LWAC) beams reinforced with glass fiber reinforced polymer (GFRP) bars. Firstly, concrete mixtures with different volume fractions of GF, PF and SF were tested up to compressive strength, then determine the optimum fiber content GF, PF and SF a...
متن کامل